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ABSTRACT

The interpretation of in situ or remotely sensed soil moisture data for drought monitoring is challenged

by the sensitivity of these observations to local soil characteristics and seasonal precipitation patterns.

These challenges can be overcome by standardizing soil moisture observations. Traditional approaches

require a lengthy record (usually 30 years) that most soil monitoring networks lack. Sampling techniques

that combine hourly measurements over a temporal window have been used in the literature to generate

historical references (i.e., climatology) from shorter-term datasets. This sampling approach was validated

on select U.S. Department of Agriculture Soil Climate Analysis Network (SCAN) stations using a Monte

Carlo analysis, which revealed that shorter-term (51 years) hourly climatologies were similar to longer-

term (101 year) hourly means. The sampling approach was then applied to soil moisture observations from

the U.S. Climate Reference Network (USCRN). The sampling method was used to generate multiple

measures of soil moisture (mean and median anomalies, standardized median anomaly by interquantile

range, and volumetric) that were converted to percentiles using empirical cumulative distribution func-

tions. Overall, time series of soil moisture percentile were very similar among the differing measures;

however, there were times of year at individual stations when soil moisture percentiles could have sub-

stantial deviations. The use of soil moisture percentiles and counts of threshold exceedance provided more

consistent measures of hydrological conditions than observed soil moisture. These results suggest that

hourly soil moisture observations can be reasonably standardized and can provide consistent measures of

hydrological conditions across spatial and temporal scales.

1. Introduction

Soil moisture is an important component of the hy-

drological cycle that describes the availability of water

for vegetation and the capacity of the soil to retain/

absorb incoming precipitation. As a result, observed (in

situ and remotely sensed) or modeled soil moisture data

can be readily applied to a variety of applications (Ochsner

et al. 2013): monitoring and/or forecasting droughts (Otkin

et al. 2016; Mo and Lettenmaier 2015; Hayes et al. 2012;

Bell et al. 2015) and floods (Wright et al. 2018; Brocca et al.

2014; Crow et al. 2011), agriculture (Otkin et al. 2015;

Mishra andCherkauer 2010), construction (Ejemet al. 2017;

Thorpe and Karan 2008), natural resource management

(Groffman et al. 2014; West et al. 2009), and human

health (Coopersmith et al. 2017), among others. Despite

the increasing availability of soil moisture observations

over the past decade, the widespread adoption of soil

moisture data has been limited by the challenges of

interpreting absolute (i.e., volumetric) measurements,

which have well-known sensitivities to soil character-

istics (Manns et al. 2014), land cover, elevation/slope

(Brocca et al. 2007), and seasonal precipitation patterns

(Bell et al. 2010; Manns et al. 2014; Xia et al. 2015).

As a result, absolute measures of soil moisture can vary

greatly over short distances, making it difficult to compare

observations across local and regional scales or distinguish

between dry and wet conditions at a location over time

(Palecki and Bell 2013; Coopersmith et al. 2016). These

spatial and temporal interoperability issues extend to the

scientific community aswell (Dirmeyer 2011;Wuet al. 2002;
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Leeper et al. 2017) as scientists explore the role of soil

moisture in regional climate variability (Guo andDirmeyer

2013; Findell and Eltahir 1997; Schär et al. 1999; Soulé
1990) and its links to the severity and persistence of floods

and droughts (Mo 2011; Hong and Kalnay 2000; Bonan

and Stillwell-Soller 1998).

Standardizing absolute observations can provide a

relativemeasure of soil moisture conditions that account

for these locational and seasonal variations with a more

consistent measure of soil moisture conditions. A com-

mon approach to standardizing datasets is an empirical

method based on a climatology derived over a historical

reference period (Arguez et al. 2012). Traditionally, a

climatology is based on the arithmetic mean, but it is

not uncommon to have a median-based climatology for

shorter-term datasets or those with outliers. From the

climatology, anomalies (observation–climatology) or

standardized anomalies (i.e., anomaly divided by stan-

dard deviation (for mean climatology) or interquartile

range (for median) can be evaluated. These measures

can be used to develop an empirical cumulative distri-

bution function (ECDF) over the historical period to

give current observations a percentile rank between 0

(the driest measurement) and 1 (wettest measurement).

Another approach might be to apply the ECDF directly

on volumetric soil moisture observations. Regardless

of the approach, an advantage of these empirical ap-

proaches is that the historical reference period accounts

for seasonal and locational variations in the data. One

drawback is the assumption that the historical reference

period provides an adequate distribution of plausible

soil moisture conditions, which may not always be the

case. This is whymost empirical techniques require 30 or

more years of data, which is problematic since most

soil moisture observing systems (in situ and remotely

sensed) over the United States have fewer than 10 years

of data (Schaefer et al. 2007; Bell et al. 2013).

Recently, studies in the literature have explored the

use of shorter-term historical reference periods with less

than 30 years of data. For instance, in the most recent

1981–2010 climate normals from the National Oceanic

and Atmospheric Administration’s (NOAA) National

Centers for Environmental Information (NCEI) pro-

vided an hourly supplemental normal (i.e., climatology)

based on 10 years of automated observations from U.S.

airports (Applequist et al. 2012). This short-term cli-

matology was generated using a sampling of hourly

measurements over a 15-day window (7 days before

and after at the same hour) for each year over the period

or record (Applequist et al. 2012). Similarly Ford et al.

(2016) used a 31-day sampling window on daily soil

moisture observations to measure differences between

ECDFpercentiles based on datasets with differing record

lengths (Ford et al. 2016). In their study, Ford et al. (2016)

showed that a 5-yr historical period of daily soil moisture

data could reasonably reproduce percentiles derived

from a longer-term (15 year) historical period. These

studies suggest that shorter-term datasets can be rea-

sonably used in empirically based standardization rou-

tines with little impact on their performance provided

the short-term period captures the full range in soil

moisture conditions.

The purpose of this study is to explore the use of

empirically based methods to standardize hourly soil

moisture observations. The availability of an hourly

standardized soil moisture dataset can be particularly

useful for subdaily-scale applications (i.e., flood moni-

toring) and ease the synchronization of data temporally

with the results of modeling and remote sensing val-

idation studies. In addition, the hourly standardized

metrics can be aggregated (i.e., averaged, counts of

exceedance, etc.) over weekly to seasonal time scales

for drought monitoring and other long-term appli-

cations in a way that provides additional information

(i.e., trends) about the variability of soil moisture

conditions.

In this study, we propose to expand upon Ford et al.

(2016) daily analysis by comparing hourly climatologies

produced from long-term (101 yr) and short-term

(,10 yr) data records. The climatology will be based

on the sampling methodology mentioned earlier

(Applequist et al. 2012) applied the U.S. Department of

Agriculture’s (USDA) Soil Climate Analysis Network

(SCAN). SCAN has a long-term soil moisture record

(10–20 yr) that will allow for the short- and long-term

comparisons as well as an evaluation of how represen-

tative recent short-term periods are to the longer-term

distribution. In addition, a series of empirically based

standardized soil moisture metrics will be evaluated at

U.S. Climate Reference Network (USCRN) stations

and compared during differing stages of drought con-

ditions as described by the U.S. Drought Monitor. The

USCRN has 7–9 yr of hourly soil moisture data from

which to evaluate differing approaches to standardizing

soil moisture observations from diverse areas of the

United States. It was anticipated that standardized

measures of soil moisture conditions will provide

improved insight into the evolution of hydrological

conditions (drought intensification and amelioration)

beyond absolute observations.

2. Data

a. U.S. Climate Reference Network

USCRN is a low-density network of 137 climate

monitoring stations in the United States that observe
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atmospheric (air temperature, precipitation, relative

humidity, and 1.5-m wind speed) and surface/subsurface

(surface infrared temperature, soil moisture, soil tem-

perature) climate variables (Diamond et al. 2013). The

atmospheric sensors were deployed beginning in 2001

with soil sensors added to stations in the contiguous

United States between 2009 and 2011 (Bell et al. 2013).

The network monitors soil temperature and moisture

conditions using the Hydra Probe II Soil Sensor Model

SDI-121 of Stevens Water Monitoring Systems, Inc.,

which is a dielectric sensor operating at the 50-MHz

frequency. The dielectric observations are converted to

volumetric soil moisture using the loam equation de-

scribed in Seyfried et al. (2005). These sensors were in-

stalled in three sets at five depths (5, 10, 20, 50, and

100 cm) or two depths (5 and 10 cm) depending on the

site soil depth. The installation of three sets of probes

surrounding the station mast aids in the preservation

of data continuity (individual sensor outages) and assists

data quality control efforts described by Bell et al.

(2013). In this study, layer averages of available sensors

at each depth were used to generate soil moisture

climatologies and standardized metrics. Additional

information about the USCRN network and soil moni-

toring efforts are provided in Diamond et al. (2013) and

Bell et al. (2013), respectively.

b. USDA Soil Climate Analysis Network

SCAN is an irregularly distributed network consisting

of over 200 stations across the United States that also

observe above- and below-ground weather conditions.

This network was used to evaluate the sampling method

because it utilizes the same sensing technology installed

at the same five depths as USCRN stations, but with a

record of more than 11 years at some locations. A subset

of SCAN stations were selected based upon data record

length (.11 yr), spatial distribution through several cli-

mate regions, and a manual review of data quality and

homogeneity. A manual data quality check was applied

to ensure that there were no obvious nonclimatic shifts

in the data records from changes in sensor model and/or

individual sensor replacement. This analysis resulted in

the selection of 14 SCAN stations with 111 years of data

from at least one depth with no obvious inhomogeneity

(Table 1).

c. U.S. Drought Monitor

The U.S. Drought Monitor (USDM) team provides

expert evaluations of drought conditions across the

United States. The USDMmap is produced jointly by

theNational DroughtMitigation Center (NDMC) at the

University of Nebraska, USDA, and NOAA. USDM

maps are released weekly and show the spatial dis-

tribution of drought by severity status (Table 2). The

weekly maps are based on geophysical observations

(e.g., precipitation anomalies, drought indices, streamflow,

vegetation state, and others) and drought impacts re-

ported by trusted experts effective on Tuesday morn-

ing of every week (Svoboda et al. 2002; Hayes et al.

2012). Historical drought conditions from the USDM

GIS Data Files Archive (https://droughtmonitor.unl.edu/

Data/GISData.aspx) between 2009 and 2017 were

extracted for each USCRN station in the contermi-

nous United States. Weekly averages of USCRN

volumetric, anomaly, percentile, and threshold ex-

ceedance counts were evaluated in comparison with

differing degrees of USDM drought status at national

and local scales.

TABLE 1. Selected SCAN site station name, state, latitude and longitude, start year, number of monitoring years (ending in 2017), and

monitoring depths passing manual quality control review.

Site State Lat Lon Start year Year count Monitoring depths (cm)

Nunn CO 40.87 2104.73 2003 15 20

EROS Data Center SD 43.74 296.61 2003 15 5, 10, and 20

Fort Assiniboine MT 48.48 2109.80 1997 21 5, 10, and 20

Table Mountain MT 45.80 2111.59 2006 12 5, 10, and 20

Mandan ND 46.77 2100.92 1997 21 10, 20, and 50

Adams Ranch NM 34.25 2105.42 1997 21 5, 10, and 20

Geneva NY 42.88 277.03 1997 21 5 and 10

Crescent Lake MN 45.42 293.95 2003 15 5, 10, 20, and 50

Lind WA 47.00 2118.57 1999 19 5 and 10

Walnut Gulch AZ 31.73 2110.05 2001 17 5 and 10

Little River GA 31.5 283.55 2000 18 5, 10, and 50

Pee Dee SC 34.3 279.73 2002 16 5, 10, and 20

Youmans Farm SC 32.67 281.2 2002 16 5, 10, 20, and 100

Mount Mansfield VT 44.53 272.83 2002 16 5, 10, and 20

1 The USCRN Program does not endorse any specific commer-

cial instrument models.
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3. Method

a. Sampling method

In this study, a samplingmethod was used to establish a

station’s historical reference period for each calendar

hour based on the sampling period. The sampling period

was defined as a set of days (sampling length) centered

on a date and hour of interest that repeats annually over

the period of record. Thus a historical period consists

of a collection of hourly soil moisture observations over

the sample period for the same hour, which accounts for

any diurnal temperature dependencies in the dielectric

soil moisture measurements as noted by Seyfried and

Grant (2007). The sampling method increases the

number of observations within the historical reference

period by a factor of the sampling length. Historical

periods that had more than 60% of the soil moisture

observations missing were excluded in this study. This

situation most commonly occurred for northern stations

when soils were frozen. Frozen soil conditions are de-

tected based on soil temperatures and removed by quality

control checks because the dielectric probes used at

in situ networks cannot detect ice. Alternate sampling

approaches (not described here) were evaluated that

included additional hours on either side of the current

hour, but these were found to have minor impact on

station standardization routines.

b. Standardization methods

Standardized hourly 5-cm soil moisture observations

from the USCRN were compared by generating time

series of soil moisture percentiles using an ECDF. The

ECDF in our method ranks from driest to wettest the

soil moisture measures over the same historical period,

and assigns a percentile to the target year/day/hour

based upon the percentage of the observations that are

equal to or less than that case. In this way, the percentile

provides a measure of how common or rare a measure is

for the date and hour.

The simplest approach considered in this study was

based directly on volumetric soil moisture observations.

In this method, raw volumetric observations over the

historical period were used to generate separate ECDFs

for each calendar hour. Volumetric observations were

then converted to soil moisture percentiles using the

appropriate ECDF for the respective calendar hour. The

more sophisticated approaches constructed ECDFs

based on soil moisture anomalies, which require the

computation of a climatology over the historical ref-

erence period. In this study, anomalous soil moisture

conditions were generated using climatologies derived

from both the arithmetic mean and median. One ad-

ditional approach considered divided station median

anomalies by the interquartile range (the spread be-

tween the 25th and 75th soil moisture observation over

the historical reference period) to create a standardized

median anomaly. Standardizedmean anomalies (division

by standard deviation) were not considered because

neither soil moisture observations nor anomalous

conditions were normally distributed, which is an

underlying assumption for this approach.

In the study, the four measures (raw volumetric,

anomaly from the mean, anomaly from the median, and

standardized anomaly from the median) as noted above

were used to generate soil moisture percentiles using the

same hourly historical reference period. These percen-

tile time series will be referred to as the volumetric

(VSM), mean anomaly (MNA), median anomaly

(MDA), and standardized median anomaly (STA). The

four percentile time series will be used to evaluate

counts of hourly exceedances below the 2nd (,0.02), 5th

(,0.05), 10th (,0.10), 20th (,0.20), and 30th (,0.30)

percentiles. The choice of these thresholds corresponds

to USDM drought classifications (i.e., D4–D0) described

in Table 2.

c. Sample and period of record length sensitivity study

To evaluate the use of hourly soil moisture data in

empirical standardization routines, data from SCAN

stations were used to compute mean-based hourly soil

moisture climatologies (Applequist et al. 2012). For the

sake of brevity, the other methods for creating a clima-

tological base (median climatology or direct volumetric)

used in this study were not considered here. The com-

putation of a soil moisture climatology was believed to

be sensitive to both the length of the historical period

and choice of sampling length or the number of days

surrounding the target day/hour. To evaluate these

sensitivities on station 5-cm soil moisture climatology,

a Monte Carlo simulation (e.g., Ford et al. 2016) was

completed using select SCAN stations (Table 1). The

Monte Carlo runs consisted of 1000 randomly chosen

nonsequential sets of 3, 5, 7, 9, and 11 annual periods

(January–December) from each SCAN station’s period

of record to represent differing historical period lengths.

TABLE 2. U.S. Drought Monitor drought severity classification

(Hayes et al. 2012).

Category Description Soil moisture percentiles

None Typical to wet .31

D0 Abnormally dry 21–31

D1 Moderate drought 11–20

D2 Severe drought 6–10

D3 Extreme drought 3–5

D4 Exceptional drought 0–2
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For each of the randomized sets (1000 draws), sampling

lengths of 1, 3, 7, 15, 31, and 45 days (e.g., Applequist

et al. 2012) centered on the target date were used to

derive over 30 000 climatologies per station. These

climatologies were used 1) to evaluate the appropriate

sampling length to generate stable climatologies for

short-term hourly time series of soil moisture observa-

tions and 2) to determine how well hourly climatologies

from the most recent 7-yr period (USCRN’s period of

record) compared to theMonte Carlo distribution of the

1000 randomized draws for the appropriate sampling

length run.

d. USDM comparison

In this study, USCRN hourly soil moisture obser-

vations and standardized measures were evaluated by

USDM status relevant to each station and time. The

intent of this analysis was to evaluate the performance of

standardized measurements from local to national per-

spectives by comparing how volumetric and standard-

ized soil moisture metrics describe the state of the soil

moisture condition during drought.

Given the broad definitions of drought that span times

scales from meteorological (days) to hydrological (sea-

sons), USCRN volumetric and standardized measures

of soil moisture conditions were averaged (exceedance

counts summed) over 7-day periods ending at the hour

corresponding to the USDM analysis: Tuesday at

1200 UTC. The deeper layers were excluded from this

investigation because not all stations within the network

monitor these depths. National volumetric and stan-

dardized soil moisture conditions were grouped by

USDM status to evaluate mean conditions by drought

severity class (from ‘‘none’’ to D4). Local analysis

included examples from two USCRN stations during

the 2012 drought that experienced rapid drought onset

and improvement at Whitman, Nebraska, and Stillwater,

Oklahoma, respectively.

4. Results

a. Sensitivity of standardization to record and
sampling lengths

Monte Carlo simulations revealed that measures of

error for the short-duration (sampled) climatology were

relativity small when compared with SCAN’s longer-

term climatology. Averages of mean absolute error

(MAE) and root-mean-square error (RMSE) ranged

between 0.009 and 0.026m3m23 and between 0.010 and

0.034m3m23, respectively. The magnitude of errors

decreased with the addition of more years and longer

sampling lengths (Fig. 1). The rate of error reductions

due to more years diminished after 5, which was similar

to Ford et al. (2016) results. Similarly, the magnitude of

error declined very little between sampling lengths of

31 and 45 days. These results suggest that an hourly soil

moisture climatology can reasonably represent a longer-

term mean using the sampling approach with a 31-day

sampling length on a dataset with 5 or more years of

observations.

Analyses demonstrated that the most recent 7-yr pe-

riod aligned well with the randomly drawn Monte Carlo

distribution at most SCAN stations studied, but the

standardized differences varied over the calendar year.

Mean absolute deviation of the recent 7-yr hourly cli-

matology was less than 0.34 standard deviations for all

sample length windows tested of the 1000 randomly

drawn 7-yr Monte Carlo climatologies (Fig. 2). The

correspondence of themost recent 7-yr climatology with

the long-term climatology varied by season (Fig. 3) and

at some SCAN stations and times of year deviated from

the Monte Carlo climatology by as much as 2 standard

deviations. This is an important caveat of the approach,

and suggests products based on a sampled climatology

be well documented (i.e., base period clearly described)

and updated regularly (i.e., annually). That said, the

FIG. 1. The 1. 5-cm-depth (top) mean absolute deviation and

(bottom) root-mean-square error for the 3-, 5-, 7-, 9-, and 11-yr

Monte Carlo mean climatologies in comparison with the longer-

term mean by sampling lengths 1, 3, 7, 15, 31, and 45 days.
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small overall averaged errors indicate that the last seven

years can produce reasonable estimates of longer-term

(10 yr) hourly soil moisture climatologies using the

sampling method presented.

b. USCRN soil moisture–USDM national
comparison

During the 2009–16 period of record for USCRN’s

soil moisture measurements, nationally averaged 5-cm

volumetric and standardized soil moisture metrics all

decreased with increasing drought severity (Fig. 4). All

metrics had their sharpest decline from nondrought to

abnormally dry (D0) conditions. Themetrics diminished

more slowly with increasing drought intensity from

D0 to D4. Mean and median anomalous soil moisture

conditions displayed small changes resulting from the

use of volumetric units in these anomalies as compared

with the standardized median anomaly units. As would

be expected, there were little to no average differences

among the four empirical percentiles on a national level,

as most ECDFs would stack the cases in the same or

similar order, resulting in similar percentiles. This was

also true for 7-day averages that underwent week-to-

week worsening (D3/D4) and improving (D3/D2)

USDM conditions (Fig. 4). While mean volumetric soil

moisture conditions declined with higher drought cate-

gories, the decline is misleading. Since stations in desert

climates like the U.S. Southwest have a much smaller

and lower range of absolute volumetric soil moisture,

this change is largely dominated by droughts occurring

in places that normally have higher soil moisture levels.

In sandy dry areas of the country, for instance, it is not

uncommon to havemean soil moisture conditions below

0.1m3m23, which according to national averages (Fig. 4)

represents extreme drought conditions.

To explore this further, the network was partitioned

by dominate soil type (sandy vs silt/clay soils) based

on laboratory analysis of soil samples taken when 5-cm

probes were installed, and by season. These results

revealed that USDM category national averages of ab-

solute volumetric soil moisture varied considerably more

by dominate soil characteristic and season (Figs. 5a,c)

than the anomaly soil moisture percentiles (Fig. 4). The

relatively more stable soil moisture percentiles by soil

characteristics reveals the value of a station-specific

standardization (Figs. 5b,d), which extends to the

other standardization methods given their level of

agreement. An additional standardized measure that

related even more strongly to drought severity was the

count of threshold exceedance (Fig. 6). The percent of

hours over the 7-day period that were less than the

20th percentile increased for all standardized mea-

sures from none to D4 conditions. This was particularly

true for weeks having worsening USDM conditions.

Overall, these results suggest that the nuances between

the standardization approaches are negligible when

FIG. 2. The most recent 7-yr climatology mean absolute deviation

from the 1000 randomized 7-yr Monte Carlo 5- (light green), 10-

(green), and 20-cm (dark green) climatologies.

FIG. 3. Long-term (black curves) and last-7-yr (green curves)

climatologies within 2 standard deviations of the 1000 randomized

7-yr draws of the Monte Carlo simulation (orange dashed curves)

for the (top) Eros Data Center and (bottom) Youmans Farm.
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aggregating over national scales; however, local effects

should not be discounted.

c. Local case studies

Throughout the 2012 growing season at Whitman the

USDM reported the rapid onset of drought conditions

with status changing from none to D2 in 4 weeks (Fig. 7)

and to D4 within 13 weeks. Seven-day-averaged volu-

metric soil moisture conditions decreased slightly from

0.09 (the climatological average for this sandy location

and time of year) to 0.04m3m23 in mid- to late May,

2 weeks prior to the USDM placing the station in D0

drought. Volumetric conditions dried further to less

than 0.01m3m23 by early August. During this same

period, 7-day-averaged anomalous conditions oscillated

around near-normal (;0) conditions before dropping

to 20.04m3m23, 20.04m3m23, and 21.5 standard units

for the mean, median, and standardized median anom-

alies, respectively. Interestingly, the standardized median

anomalies rebounded somewhat following the 15 May

drop, hovering around20.7 standard units throughout the

rest of the study period. Mean percentiles had a similar

temporal response with percentiles for all metrics drop-

ping from slightly above-normal conditions (;55%) to

roughly 10% by mid-May. Differences among the various

standardized percentiles were generally larger during the

FIG. 4. (left) Nationally averaged 7-day means for U.S. Drought Monitor drought status levels: 5-cm absolute volu-

metric soil moisture (VSM; black), mean anomaly (MNA; yellow), median anomaly (MDA; orange) and standardized

median anomaly (STA; red). Note that the MNA and MDA lines only slightly deviate from zero. (right) Nationally

averaged percentile values for the four metrics (VSM, MNA, MDA, and STA) and USDM status levels display little

difference between metrics. Shown are results for (top) all, (middle) worsening, and (bottom) improving weeks.
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summer season (from 15 May through 25 September).

Overall, the percentile measures show just how significant

a 0.05m3m23 volumetric soil moisture drop was for this

station and time of year. Similar to national averages, after

the initial soil moisture percentile dropped, it hovered

within the range between the 0th and 20th percentile for

the remainder of 2012. Without some background knowl-

edge of central Nebraska’s sandy soils, the importance

of the small 0.05m3m23 drop in volumetric soil moisture

could have beenover lookedbydecisionmakers unfamiliar

with local conditions. For this reason, the standardized soil

moisture metrics provided information that is more com-

parable over time and geography concerning the severity

of drought conditions than volumetric soil moisture alone.

The lingering drought from 2012 began to abate dur-

ing the spring and summer months of 2013 at Stillwater

(Fig. 7). Absolute volumetric soil moisture conditions

over this same period slowly declined even as the

USDM lowered its drought status fromD3 to none. The

reduction in volumetric soil moisture followed the nor-

mal seasonal pattern (Fig. 7, black line) related to an

actively transpiring grassland and reduced precipitation.

The reduction in volumetric soil moisture was contrary

to improving hydrological conditions at this station

visible in both anomalous and percentile conditions

(Fig. 7). Measures of anomalous soil moisture condi-

tions steadily increased from20.1m3m23,20.1m3m23,

and 21.0 standard units in March to 10.14m3m23,

10.17m3m23, and11.4 standard units in lateAugust for

the 7-day-averaged mean, median, and standardized

median anomalies, respectively. Similarly, all percen-

tile measures increased throughout 2013 with notable

rise from 10% to 80% over the 3-week period ending

9 April 2013. Since the 7-day-averaged volumetric soil

moisture conditions slightly decreased over the spring

and summer months at Stillwater, it was clear that the

standardized soil moisture metrics (anomalous and

percentile conditions) provided a better description of

the changes in the local hydrological state than absolute

volumetric conditions alone.

5. Discussion and conclusions

In this study, we proposed standardizing hourly soil

moisture observations from networks with shorter-term

records using a sampling methodology. Monte Carlo

simulations revealed little difference between sampled

datasets with five or more years of soil moisture data.

FIG. 5. National averages of USCRN (top) absolute volumetric and (bottom) percentile soil moisture conditions

byUSDMdrought status and (a),(b) soil type and (c),(d) season. Dominant sand (red) and silt/clay (orange) station

results were based on the 100 monitoring stations for which soil analysis were available: 57 sandy sites and 43 silt/

clay sites. The seasonal analyses were broken down by: December–February (winter; blue), March–May (spring;

green), June–August (summer; red), and September–November (autumn; orange). Note that fewer stations are

available in winter because of frozen ground.
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However, these results were contingent on how repre-

sentative the sampled soil moisture observations were to

the possible range of soil moisture conditions. This could

be an issue for a station that has seen similar hydrolog-

ical conditions (either dry or wet) over much of its short

period of record. In our study, nearly all of the select

SCAN stations’ recent sampled means were within 2

standard deviations of the 1000 randomly drawn 7-yr

sampled means. These results indicate good agreement

between randomly sampled and recently (last 7 years)

sampled climatologies and that the sampling approach

can be applied to hourly soil moisture observations from

short-lived soil monitoring networks.

The sampling approach was used to compute several

hourly standardized soil moisture measures (anomalies

and percentiles), which were compared with unstandard-

ized soil moisture observations. In this analysis, the util-

ity of standardized soil moisture as opposed to absolute

observed soil moisture conditions was particularly clear

in the USDM analysis. For instance, standardized soil

moisture conditions were found to be less sensitive to soil

characteristics. In addition, national weekly counts of

hours below critical soil moisture percentiles (i.e., ,20th

percentile), which steadily increased with UDSM status,

could serve as an indicator of hydrological trends (drought

intensification versus amelioration). At the station level,

weekly averages of soil moisture percentiles provided a

more straightforward depiction of evolving hydrological

conditions. In the two case studies explored here, the use

of either standardized anomalies or soil moisture percen-

tiles provided information on about hydrological condi-

tions at stationswithout any of the background knowledge

of a station’s climate or soil profile.

However, there were some important differences be-

tween USCRN standardized soil moisture and a stations’

USDM drought status. In the literature, soil moisture

conditions are thought to describe meteorological to ag-

ricultural forms of drought, whereas the USDM’s is a

multiscale measure of drought, designed to capture

drought from meteorological to hydrological perspec-

tives. As a result, there were times when surface soil

layers may moisten to high percentiles, indicating

drought improvement at meteorological to agricultural

scales, because of heavy rains despite moderate drought

conditions from theUSDM that were reflective of longer-

term drought conditions (i.e., hydrological to ecological

drought). This was likely due to differences of the tem-

poral scales of the two measures. For instance, there are

meteorological differences between a location in D3

statuswhen the prior weekwasD2 versusD4. In the latter

case, D3 status indicates drought improvement over last

week, which from a meteorological and soil moisture

condition perspective might indicate wet conditions. This

explains why mean soil moisture percentiles by USDM

status were remarkably different between drought wors-

ening and improving weeks. In addition, meteorological

and agricultural forms of drought tend to be leading in-

dicators of drought initiation. This combined with the

physical limit of soil moisture (wilting point) may help to

explain why the top layer’s mean soil moisture percentiles

did not further degrade (lower) past D0 status at the na-

tional level. Additional analyses with a greater focus on

individual drought events over different parts of the

FIG. 6. National averages of the 5-cm 7-day percentage of hours

below theVSM,MNA,MDA, and STA20th percentiles byUSDM

drought classifications for (top) all, (middle) worsening, and (bot-

tom) improving weeks.
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country are currently under way. These analyses will

include deeper soil layers where available, as these are

necessary to fully evaluate the utility of standardized soil

moisture measures.

Differences among the various methods used to pro-

cess soil moisture information (anomalies, standardized

anomalies, or straight volumetric soil moisture) were

subtle. This was particularly true when the standardized

measures were analyzed from a nationally averaged per-

centile perspective. At the station scale, there were dis-

cernible differences among the standardized percentiles,

which ranged between 2% and 10% among most stations

(not shown here) similar to Durham, North Carolina

(Fig. 8). However, there were stations with much larger

differences. At Elgin, Arizona, differences between the

mean-anomalous and other percentile peak over120% in

some cases, which seemed to follow the of timing of the

summer monsoon and winter precipitation seasons. This

suggests that differences between standardization ap-

proaches may be related to subtle nuances in how the

approaches describe the drier end of soil moisture spec-

trum. The lack of disparity of percentiles among the

standardization methods suggest there is no clear advan-

tage of using one method over another if the focus is on

generating ECDF percentile time series. However,

there may be applications where soil moisture anomalies,

FIG. 7. The 7. 5-cm 7-day-averaged (top)VSM, (middle)MNA,MDA, and STA anomalies, and (bottom)VSM,MNA,

MDA,andSTApercentiles for soilmoisture conditions at (left)Whitmanduring the rapidonset of drought conditions (gray

bars) during the 2012 drought and (right) Stillwater during drought improvement in 2013. Standardized median anomalies

were normalized by a factor of 10 in the middle panels to allow comparison with mean- and median-based anomalies.
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particularly standardized anomalies, may prove useful

such as accumulated anomalies to monitor hydrologi-

cal deficits/surplus.

The soil moisture measures explored in this study

(anomalies, standardized anomalies, percentiles, and

counts of exceedance) provided substantial insight into

hydrological conditions and trends during drought be-

yond absolute volumetric quantities. Furthermore, the

availability of an hourly standardized soil moisture dataset

provided additional information about intraweekly soil

moisture variability that was better aligned with USDM

status than 7-day averages. These intraperiod aggregates

(i.e., counts of exceedance) based upon hourly data can be

updated in near–real time, which is an important charac-

teristic of drought indicators (Heim 2002), and perhaps

serve as an indicator of drought trends (i.e., improving

D3 vs worsening D3). While standardized percentiles

may be beneficial in some applications, absolute volu-

metric quantities as well as anomalous conditions may

be equally important in other cases, including numerical

and satellite validation, soil moisture assimilation into

weather and climate models, and irrigation calculations

where soil moisture conditions are evaluated based on a

physical baseline (i.e., wilting point, field capacity, etc.).

As such, providing a comprehensive dataset that incor-

porates both standardized and nonstandardizedmeasures

of observed soil moisture conditions would be beneficial

to a broader base of user communities.
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